

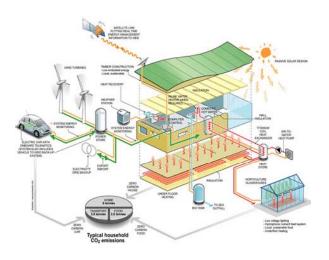
Giornata di Studio su Tecnologie, tecniche impiantistiche e mercato del fotovoltaico

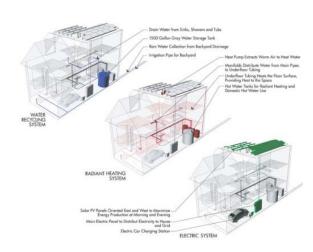
BIPV, verso la Zero Energy House

Niccolò Aste

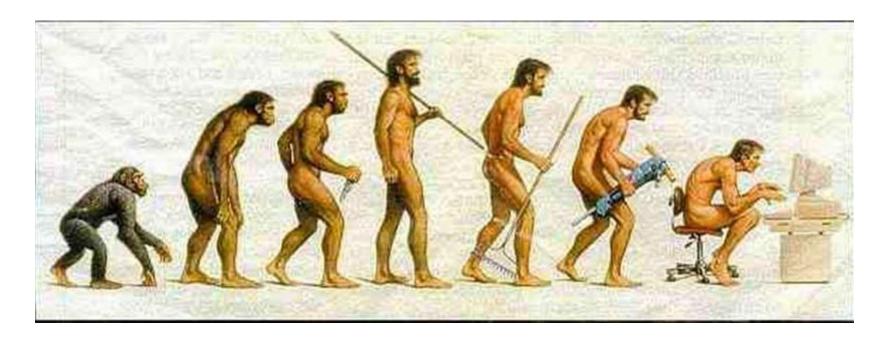
ITALY CHAPTER

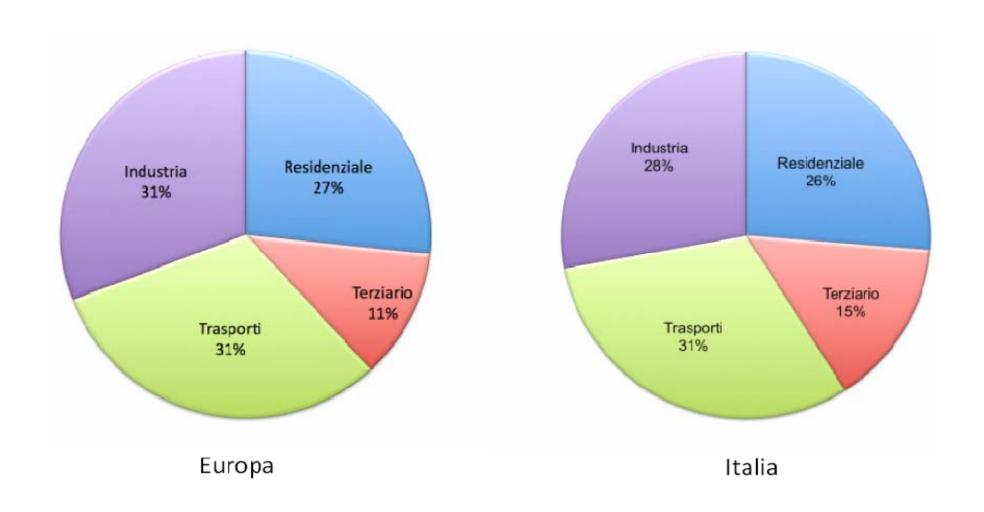
UNIVERSITÀ DEGLI STUDI DI PADOVA





Net Zero Energy Building


"Net Zero Energy Building means a building where, as a result of the very high level of energy efficiency of the building, the overall annual primary energy consumption is equal to or less than the energy production from renewable energy sources on site."



EVOLUZIONI

CONSUMI ENERGETICI FINALI

ITALIA: EDIFICIO "MEDIO"

Fabbisogno per riscaldamento: 110 kWh/m² anno

Fabbisogno per ACS: 30 kWh/m² anno

Fabbisogno app. elettriche: 40 kWh/m² anno

Fabbisogno per climatizzazione estiva: ?

Emissioni CO₂: 70 kg/ m² anno

Bolletta media italiana Riscaldamento: 1000 €/anno Consumi elettrici: 500 €/anno

ITALIA: EDIFICIO "EFFICIENTE"

Fabbisogno per riscaldamento: 25 kWh/m² anno

Fabbisogno per ACS: 25 kWh/m² anno

Fabbisogno app. elettriche: 20 kWh/m² anno

Fabbisogno per climatizzazione estiva: 30 kWh/m² anno

Emissioni CO₂: 35 kg/ m² anno

NZEB, obiettivi

EUROPA, Proposta di revisione dell'EPBD

Gli Stati membri predispongono piani nazionali per aumentare il numero di "edifici a zero energia netta".

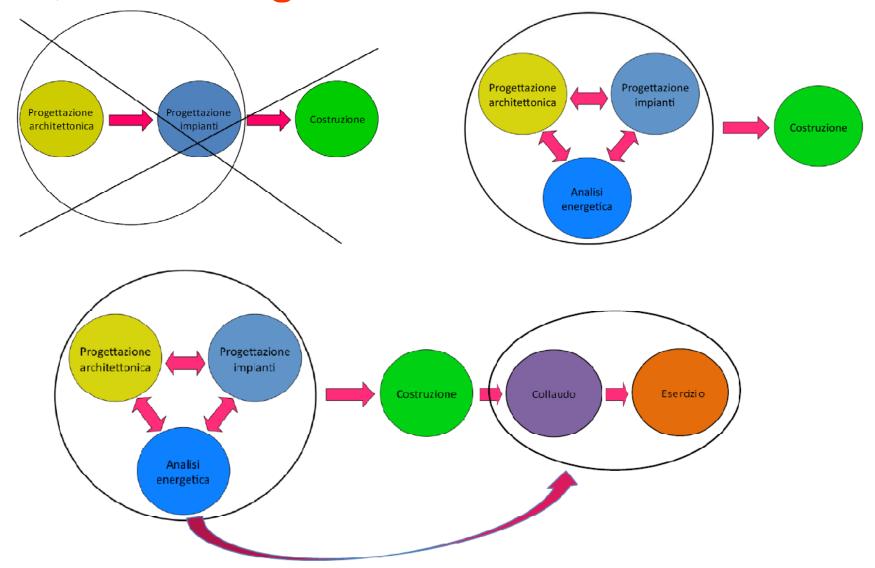
Gli Stati membri provvedono affinché tutti i nuovi edifici siano almeno NZEB entro il 31 dicembre 2018.

Per gli edifici occupati da enti pubblici, gli Stati membri fissano obiettivi da raggiungere con significativo anticipo rispetto al termine fissato, tenendo conto del ruolo di primo piano che le autorità pubbliche dovrebbero svolgere in materia di rendimento energetico degli edifici.

CALIFORNIA, Proposta di legge "Zero Energy Balance"

Tutte le case costruite dal 1° gennaio 2020 in poi dovranno avere un "bilancio energetico zero", dovranno cioè immettere nella rete elettrica almeno tanta energia quanta ne consumano, compresi sia l'elettricità che l'equivalente del gas naturale usato per il riscaldamento.

NOTA: il termine dal quale entrerebbe in vigore la nuova normativa può essere posticipato nel caso i progressi in termini di riduzione dei costi del fotovoltaico non fossero veloci come si prevede.

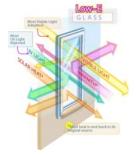

NZEB, obiettivi

RISPARMIO ENERGETICO

EFFICIENZA ENERGETICA

PRODUZIONE ENERGETICA rinnovabile

NZEB, metodologie



da Federico M. Butera "Net Zero Energy Buildings: la nuova edilizia per combattere il cambiamento climatico migliorando la qualità della vita", ECOMONDO, Città sostenibili 2009: progetti e visioni,Rimini, 28 ottobre 2009

NZEB, tecnologie

Isolamento

Inerzia termica

Vetri selettivi

Daylighting

Controllo solare

HVAC

Elettrodomestici

Building control automation

Illuminazione

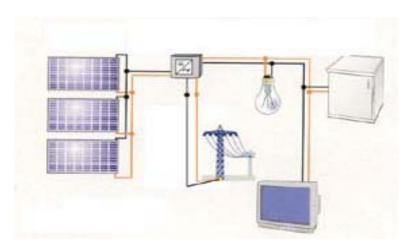
Fotovoltaico

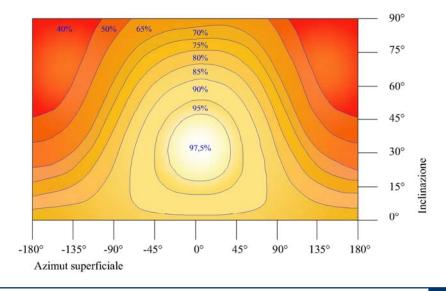
Solare termico

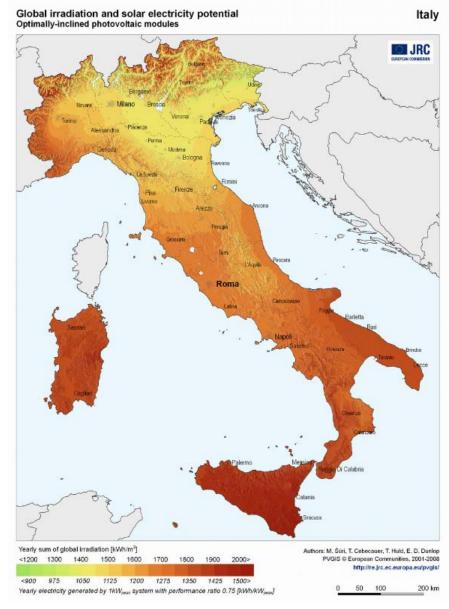
Microeolico

Biomasse

Zero Energy House

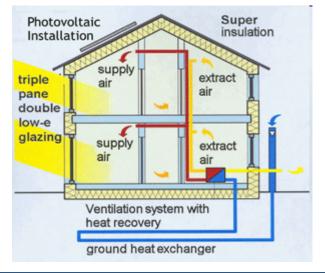


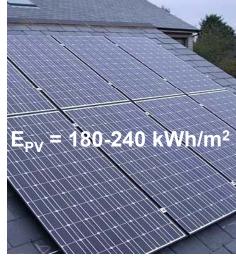




Fotovoltaico, produttività

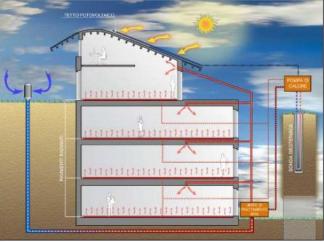
 $E_{PV}=P_{PV} \times PR \times H/I_{STC}$ Italia: 1000-1500 kWh_{el}/kW_p

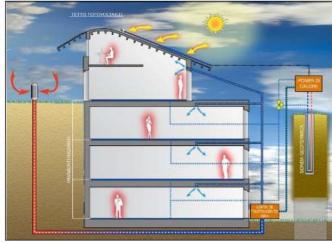




NZEB, bilancio indicativo

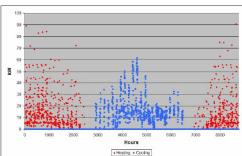
Voce di consumo	Fabbisogni (kWh/m²)	η impianto	Consumi (kWh _{el} /m²)
Riscaldamento	25	3,5 (COP)	7,2
ACS	25	3,2 (COP)	7,8
Raffrescamento	30	5,3 (EER)	5,7
App. elettriche	20	1	20
TOTALE			40,7


$$R_{PV} = S_{PV} / S_u = 0,2-0,15$$


Leaf House, Jesi (AN)

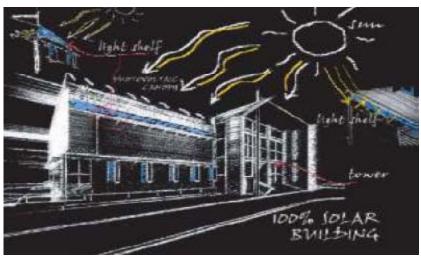
Inverno

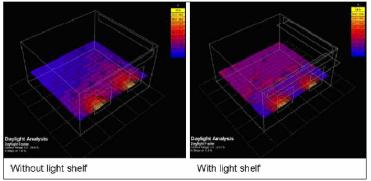
Estate

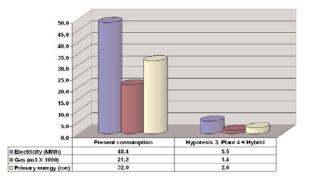


Fabbisogno per riscaldamento e ACS: 16 kWh/m² anno

Fabbisogno app. elettriche: 7 kWh/m² anno


Fabbisogno per climatizzazione estiva: 16 kWh/m² anno


Consumi finali: 0


Emissioni CO₂: 0

REC Conference Centre, Budapest

Fabbisogno elettrico complessivo (cdz, ACS, el): 28 MWh/anno

Consumi finali: 0

Emissioni CO₂: 0

Complesso Terra-Cielo, Rodano (MI)

Fabbisogno per riscaldamento: 34 kWh/m² anno

Fabbisogno per climatizzazione estiva: 22,7 kWh/m² anno

Consumo per riscaldamento: 11 kWh_{el}/m² anno

Consumo per climatizzazione estiva: 7,3 kWh_{el}/m² anno

Consumi finali: 0 (+ 10 MWh_{el})

Corte Montresora, Sona (VR)

Fabbisogno per riscaldamento: 45 kWh/m² anno Consumo per riscaldamento: 15 kWh_{el}/m² anno

Consumi finali: 3,7 kWh_{el}/m² anno