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* outlook to 3D applications

* time-of-flight measuring technique

e comparing PULSED and SWM approaches

e developing the Photo-demodulator in CMOS

* measurements and conclusions



3-D Imaging

Today’s technology is ready to develop photodetectors
for the three-dimensional world !!
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typical applications

* Homeland security
* Navigation aids

* Virtual reality

* Robotics

* Cultural heritage

* Ambient assisted living




techniques for 3D imaging

_ _ bulky, requires scanning
* Triangulation short distance

medium/low resolution

very high resolution
* Interferometry expensive, critical to operate

g

Compact, may be scannerless

Fast acquisition 00
_ _ Large distance range -
* Time-of-flight » - Cost-effective

(pulsed or SWM)

Active (illuminator required)
Ambiguity range limitation




Time-of-Flight rangefinders
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in most applications, to be interesting...

both PULSED and SW 3-D developments
should entail:

- integration of time-of-flight pixel
on-board technology with the Silicon

CMOS industry standard (and ...
low-cost !!) technology

- minimum invasiveness (optical power)
of the active illumination required




analyzing Time-of-Flight rangefinders:
pulsed vs SWM

_ 2m 2 . :
GPy=(8/N) P, 4L, /D, theoretically equivalent

at the quantum limit at
equal average power,
but PULSED is less
sensitive to stray light,
has some safety issues
and requires more
bandwidth to circuits.
SW-modulated is short-
distance, is about
eyesafe, but has range
ambiguity to circumvent
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other features of PULSED and SW

- Pulsed 3-D requires a fast (sub-ns) detector
for operation on short distances, and very fast
time sorters to measure the ns-range time
delay = SPADs and Counters with TAC

-this makes the pixel large and fill-factor low,
requiring a lens-array for sensitivity recovery

- SW works on moderate frequency (20 to 100
MHz) for 3-D short range, and by incorporating
a demodulator into the detector = circuits are
greatly simplified, and fill-factor is high



detour on the PULSED 3-D approach

- in 3-D, PULSED is a competitor to SWM
but calls for a fast (sub-ns) detector able to
resolve the sub-ns propagation times of

short-range applications
- the SPAD (Single Photon Avalanche Detector)

is the suitable choice of photosensor

- SPAD is compatible to fine CMOS technology

- an FET-STREP European Program pursued
development of a 120-nm CMOS 3-D and fast
spectroscopy imaging (32x32 and 128x160
pixels) device — the MEGAFRAME project



CMQOS SPAD parameters

a 50 um active diameter devices has been designed
in 120-nm CMOS with good performances of:
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CMOS SPAD parameters IT

and, not less important:
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On-board pixel processing

processing circuits

implemented by
f-&. H_é | CMOS technology
— ;> in a 50-um dia. pixel
e (rom seer et sene) Hnas 'S area around the
Figure 1. Pixel block diagram. 6—“m SPAD
ﬂk I -active quenching
T - premaplifier
ot  -TAC
= -comparator

-8-bit memory

Figure 2. Circuit schematic of the TAC/AEC stage.

Stoppa et al.: ESSCIRC 2009



the CMOS SPAD plxel

the plxel 50-um
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..and the 32x32 array
chip, 4-mm by side

Stoppa et al.: ESSCIRC 2009

FF = Aph/(Agct+Aph)
(~ 0.02 in example above)



fill-factor recovery in SPAD

«~— SO0Oum —

FF = An/(AgetApn)
~ 0.02 in example above
then we use a 50-um dia.
lens-array to concentrate
Incoming optical power
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128.0 pixels

Example of 3D image pickup with the
32x32 SPAD array

Accuracy:

« Imm (100 frames)
Frame rate:

* 1Hz
8-bit digital output
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going back to SW-modulated...

- the SWM is attractive for 3-D if we can
simplify data analogue processing

- then, we are asked to devise a high-
efficiency photodetector, working with
shallow epi-layer of a CMQOS, low cost,
standard industry process.

- the answer has been a specially
designed, CMOS-compatible, high FF,
photodetector demodulator




principle of SWM telemeter

‘ R(t) = K sin[w,_t -Ad) ‘ Received Light Echo
‘ M(t) = sin(w_t + 0) }—é- thpe i 1,,(0) = K/2 cos(0+Ad)
Demodulation Measured
LO Signal correlation function

recovery of phase A amenable to CMOS integration of
the pixel: the detected demodulation signal I, (t) 1s
sampled on 4-phases 0 periods of the local oscillator
M(t) so as to supply I,=1,(6=0°), I,=1;(6=90°), I;= L ,(6=180°),

I, =1,(6=270°), then we compute |, — |
Ap = arctan( 2 ]
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let's now have a look at

sensor architecture
0 design of a new photo-demodulator
O pixel design

O array architecture




PDD, the Photo-Demodulator Detector

light

M1

Electron energy [eV]

1.4

1.2

1.0
0.8
0.6

0.4

p-substrate I

0.2

0.0

M1, M2: modulation electrodes

D1, D2: collection electrodes

first reported by: Van Nieuwenhove, et al., Proc. Symp. LEOS Benelux Chapter, 229-32 (2005)



more onh the PDD

output |\ - Iy

IphI 1 f by pulsing a current |,

v (S0uA typ) between

n J pJ Vp JlnJ electrodes M1 and
R . S| M2, we can switch

™ photocurrent lph from

| output D1 to output
BN D2. If current |, is a

SV 43V sine wave, process is

e S T e S 3 demodulation of the

> detected signal (wow!)

M1, M2: modulation electrodes, D1, D2: collection electrodes
of the photo-demodulator detector (PDD)



features of PDD

advantages:

« High demodulation efficiency

« Fully Compatible with standard CMOS
technology

Issues:

«High power consumption due to
modulation current (about 100 mW)

« Pixel scalability questionable




Pixel Architecture

light

1T e

D1 M1 M2 D2

Technology:
180-nm CMOS

Pixel pitch: 10um
Fill factor: 24%
1.8-V transistors

p- epitaxial layer p well

Metal shield and modulation signal distribution
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p- epitaxial layer



Sensor Architecture

M1 M2

Modulation signal distribution tree

Row decoder

Column
amplifiers

* 120x160 pixel array

* Pseudo-differential pixel

ixel
er:y o
« Column amplifiers
e Qutput DDS amplifier
_OLitl
Output
amplifier| oyt2

Column decoder




Sensor Chip

o S e e | * CMOS 0.18jum 1P4M process

------------------------------

| E * Sensor area: 2.5x2.5mm?
' * 1.8V and 3.3V transistors
el * Epitaxial layer

i resistivity: 20 Ohm-cm

_________________________________

thickness: 4um



 Experimental Results:
0 Photo-detector performance

o 3D imaging system




Photo-demodulator: DC Performance

| DC demodulation (lm'lpz)
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Photo-demodulator: AC Performance

~\_, AC light
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Noise Performance
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No appreciable excess noise is observed with respect to
the shot-noise level (I.;= 2 nA) due to the modulation resistance



3-D Imaging System

lllumination module:

» source: LED, 20 MHz,

A: 850nm

» power in the FoV: 140 mW
» class (IEC 60825-1): 1M

Sensor:

* objective 2.9-mm, F/1

» sensor FoV 23°x30°

e total modulaton current:
400 mA (peak)




Distance Measurement
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Maximum non-linearity: 0.3%
Distance non uniformity among pixels: 0.2cm



3-D Image Example
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in conclusion...

» Current Assisted Photo-Demodulator-Detector
in CMOS technology demonstrated

* 10-um, 24% fill-factor pixel achieved,

* 50% demodulation contrast at 20MHz and

* >50MHz cutoff frequency

* 120x160 3-D image sensor designed

* real-time 3-D Imaging demonstrated,

* then...
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