

Resilience schemes in WDM networks

Guido Maier, Simone De Patre, Mario Martinelli CoreCom

Via Ampere 30 – 20131 Milan, Italy {maier, depatre, martinelli}@corecom.it

Achille Pattavina

Dept. of Electronics and Information, Politecnico di Milano
Piazza Leonardo da Vinci 32 – 20133 Milan, Italy
pattavina @elet.polimi.it

Outline

- Introduction to WDM network survivability
- Layer interaction in restoration
- WDM survivability: taxonomy
- Network planning
- Conclusions

WDM network survivability Introduction

A very important aspect of modern networks

- The ever-increasing bit rate makes an unrecovered failure a significant loss for network operators
 - More than 2,000,000 customers of the public network have been affected by link and equipment failures from 92 to 94 (cable failures: 2.643•10⁶ customer-minutes)
 - In 1987 a cut of a 12-fiber cable caused the loss of 100,000 connections, only partially rerouted after 2 hours, and millions of dollars
- Cable cuts (especially terrestrial) are very frequent
 - Fiber cables share the same ducts of other utility transport media (gas and water pipes, etc.)
- No network-operator is willing to accept unprotected networks anymore

Restoration = function of rerouting failed connections Survivability = property of a network to be resilient to failure

Requires physical redundancy and restoration protocols

Outline

- Introduction to WDM network survivability
- WDM networks: a layered vision
- WDM survivability: taxonomy
- Network planning
- Conclusions

WDM optical networks: a "layered vision"

WDM layer fundamentals

- Wavelength Division Multiplexing: information is carried on high-capacity channels of different wavelengths on the same fiber
- Switching: WDM systems transparently switch optical flows in the space (fiber) and wavelength domains

WDM layer basic functions

Optical circuit (LIGTHPATH) provisioning for the electronic layers

Common transport platform for a multi-protocol electronic-switching

environment

Electronic layers

SDH ATM IP

 \bigcirc

Lightpath connection request

Optical layers

WDM Layer
Optical transmission

(

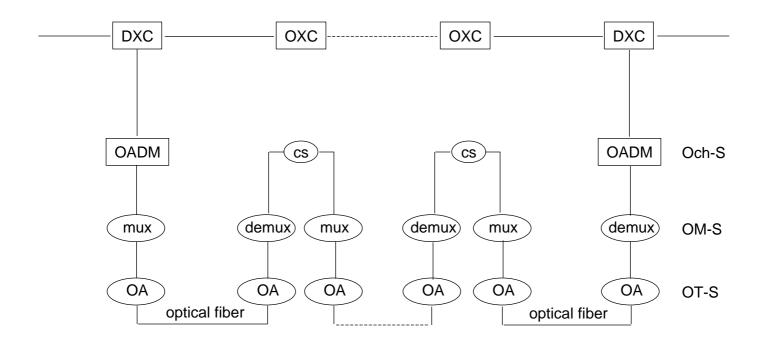
Lightpath connection provisioning

WDM protocol layers WDM sublayers

The WDM layer-stack is composed of four layers

- Optical channel sublayer (OCh)
- Optical multiplex section (OMS)
- Optical transmission section (OTS)
- Physical media layer
 - Fiber-type specification, developed in other Recommendations

Electronic Layers	
W D M	OCh- Optical Channel
	OMS- Optical Multiplex Section
	OTS- Optical Transmission Section
	Physical media (optical fiber)


WDM Transport Layer

- Optical channel section: provides end-to-end networking allowing electrical connections to be routed in the optical layer.
- Optical multiplexing section: acts on multiwavelength optical signal, providing (de)multiplexing functionality
- Optical transport section: allows to accomplish optical connection on optical media
- Survivability at the optical path layer provides a survivable common platform for the variety of transport signals

WDM protocol sublayers

Simplified scheme of a WDM connection

OXC optical Cross Connect
DXC digital Cross Connect
OADM optical Add-Drop Multiplexer

CS optical Channel Switching mux WDM multiplexer demux WDM demultiplexer OA Optical Amplifier

Layer interaction in restoration

A complete and well defined set of restoration techniques already exists in the upper electronic layers

- SDH / Sonet
- ATM
- IP

Restoration in the upper layers is relatively slow and may require intensive signaling

 50-ms range when automatic protection schemes are implemented in the transport layer

Purpose of performing restoration in the WDM layer

 To decrease the outage time by exploiting fast rerouting of the failed connections

Main problem in adding protection function in a new layer

- Instability due to duplication of functions
- This is one of the main drivers that pushes towards the merging of WDM and electronic transport layer control and management

Outline

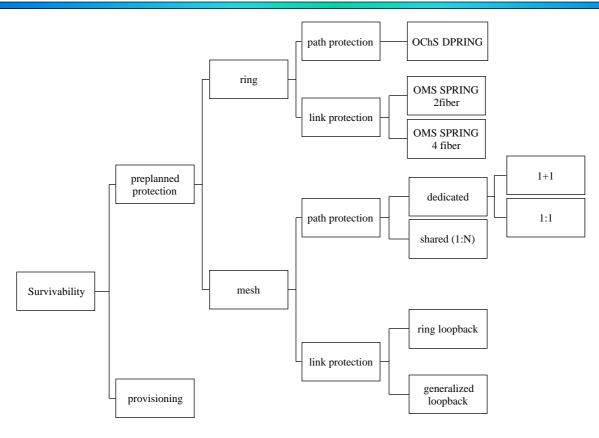
- Introduction to WDM network survivability
- WDM networks: a layered vision
- WDM survivability: taxonomy
- Network planning
- Conclusions

WDM network survivability WDM protection techniques classification

Restoration techniques can protect the network against

- Link failures
 - Fiber-cables cuts and line devices failures (amplifiers)
- Equipment failures
 - OXCs, OADMs, electro-optical interfaces

Protection can be implemented


- In the optical channel sublayer (OChS protection)
- In the optical multiplex sublayer (OMS protection)

Different protection schemes are used for

- Ring networks
- Mesh networks

Classification of resilience schemes

Protection in the optical channel sublayer (OChS)

Also called path protection

- Each lightpath is protected by end-to-end rerouting when a failure occurs
- A routing-diversity path must be ready for the protected lightpath

Pros

- The exact failure localization is not important

Cons

 Problems in restoration control and managing may rise when more lightpaths are involved in the failure

Protection in the optical multiplex sublayer (OMS)

Also called line protection or link protection

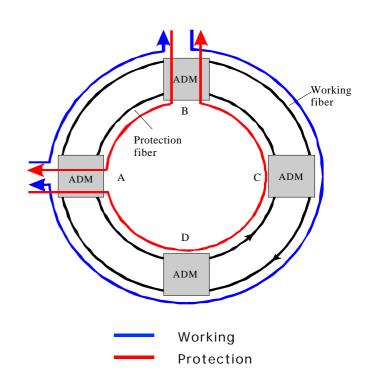
- All the WDM channels crossing a failed fiber are rerouted together
- An idle alternative fiber path must be available

Switching features

- Protection switching is performed by spatial switches operating on the entire WDM multiplex (fiber switches)
- Switching time may be very short (tens of milliseconds to tens of microseconds), if signaling is not considered

Outline

- Introduction to WDM network survivability
- WDM networks: a layered vision
- WDM survivability: taxonomy
 - Ring networks
 - Mesh networks
- Network planning
- Conclusions

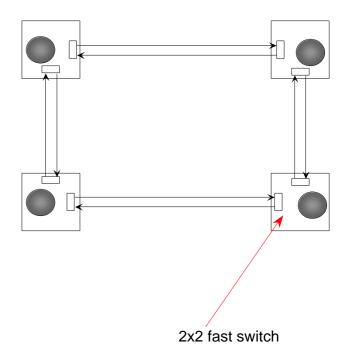


WDM path protection

Ring protection (self-healing rings): OCh-DPRING

Two-fiber bidirectional ring

- One fiber is used for working and the other counter-propagating one for protection
- The optical signal is physically split at the transmitter and routed onto two different paths (as in 1+1)
- The receiver receives both signals and selects the best one
- Dedicated protection (50% capacity reserved for protection)
- No signaling required

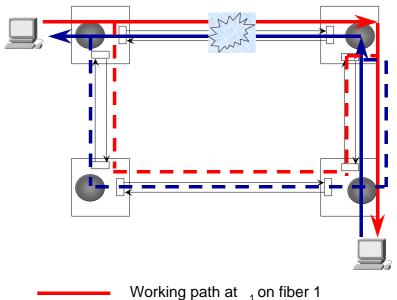

WDM OMS protection

Ring protection (self-healing rings): OMS-2 SPRING

Two-fiber bidirectional ring

- Fibers are counter-propagating
- On fiber 1 working wavelengths are from 1 to W / 2 and the other are for protection
- On fiber 2 working wavelengths are from W / 2 to W and the other are for protection
- Recovery is performed by 2x2 fast switches

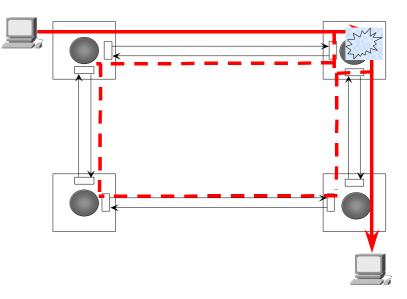
In case of failure traffic can be looped back without wavelength collision



WDM OMS protection OMS-2 SPRING – Link failure recovery

Example

 After link failure the working paths are routed in the protection fibers with the same wavelengths


Working path at $_{W/2+1}$ on fiber 2

WDM OMS protection OMS-2 SPRING – Node failure recovery

Node failure recovery is also possible

- Recovery is performed by 2x2 fast switches
- Working path is routed in the outer fiber ring
- After node failure the path is switched in the inner ring at the same wavelength

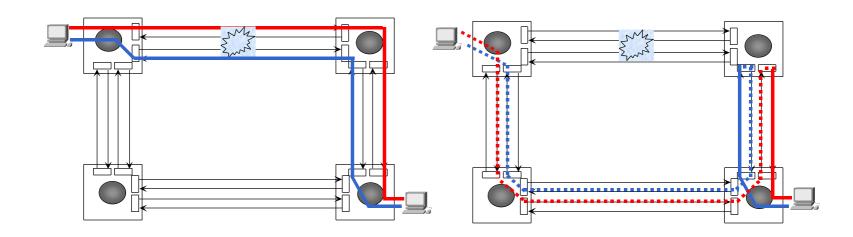


WDM OMS protection

Ring protection (self-healing rings): OMS-4 SPRING

Four-fiber bidirectional ring

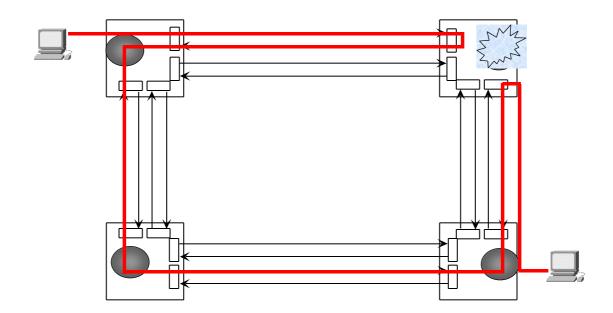
- A fiber-pair is used for working and the other for protection
- Protection-switching is performed by 2x2 fast switches
 - Optomechanical or other technology
- 50% capacity reserved for protection



WDM OMS protection OMS-4 SPRING – Link failure recovery

In case of failure of a link the ring connectivity is restored by employing the protection fibers

Signaling is required to coordinate switching at both ends of the failed node


An open issue in standardization

WDM OMS protection OMS-4 SPRING – Node failure recovery

Node-failure recovery is also possible

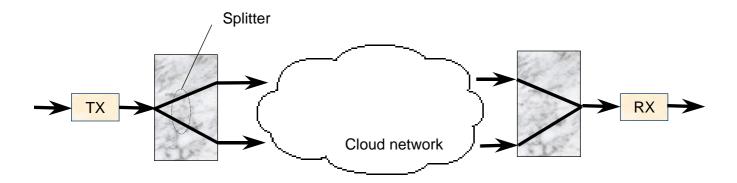
Outline

- Introduction to WDM network survivability
- WDM networks: a layered vision
- WDM survivability: taxonomy
 - Ring networks
 - Mesh networks
- Network planning
- Conclusions

WDM network survivability WDM protection in mesh networks

Various options available

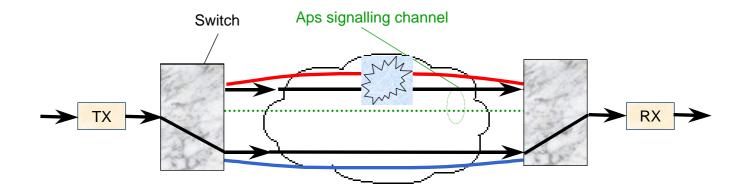
- OChS protection
 - Path protection
- OMS protection
 - Link protection
 - Span protection (backup resources are reserved in the same link)
- Restoration by provisioning


Largely an open and pre-standard issue Much more difficult to plan and control than in rings

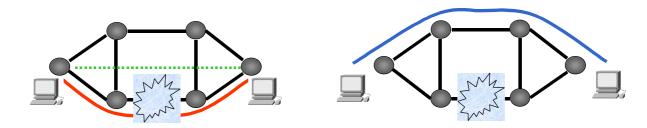
WDM path protection <u>Dedicated Path protection schemes</u>

1+1 protection

- The optical signal is physically split at the transmitter and routed onto two different paths
- The receiver receives both the signals and selects the best one
- Dedicated protection
- No signaling required
- The protection path is always in-use



WDM path protection Dedicated Path protection schemes (II)


1:1 protection

- The working lightpath is switched on the protection path only when a failure occurs
- Dedicated protection
- Signaling is required to advertise the source that a failure occurred
- Protection resources can be used by low-priority traffic in normal conditions

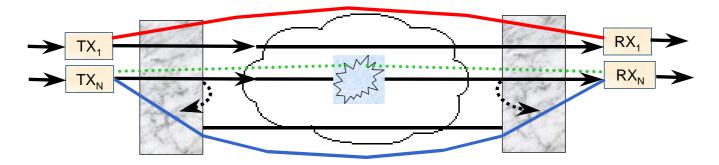
WDM mesh protection <u>Dedicated OChS</u> protection

1+1 and 1:1 dedicated protection (>50% capacity for protection)

- Both solutions are possible
- Each connection-request is satisfied by setting-up a lightpath pair of a working + a protection lightpaths
 - RFWA must be performed in such a way that working and protection lightpaths are link disjoint
 - If the connection must be protected against OXC failures, the two lightpaths must be also node disjoint

Additional constraints must be considered in network planning and optimization or in dynamic RFWA

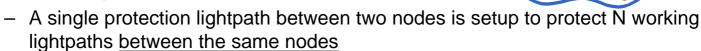
1+1 requires signaling to activate protection-switching in the source node


Transit OXCs must not be reconfigured in case of failure

WDM path protection Shared Path protection scheme

1:N protection

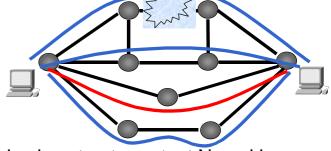
- A single protection path is used to protect a set of N paths
- All the paths involved must be in routing diversity
- It is assumed that a single failure can happen on the protected lightpaths
- The working lightpath is switched on the protection path only when a failure occurs
- Shared protection: the amount of resources reserved for protection is decreased
- Signaling is required to advertise the source that a failure occurred
- Protection resources can be used by low-priority traffic in normal conditions
- This type of protection is reverting



WDM mesh protection Shared OChS protection

Sharing is a way to decrease the capacity redundancy and the number of lightpaths that must be managed

1:N shared protection

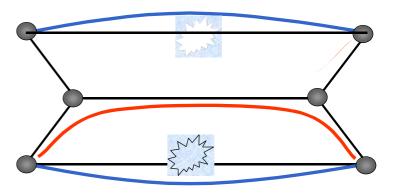


- The connection-requests must be processed all-together
 - RFWA must be performed in such a way that the N working lightpaths and the protection lightpath are mutually <u>link (node) disjoint</u>

Additional constraints must be considered in network planning and optimization or in dynamic RFWA: network control can become enormously complicated

 Severely limited by physical topology: a node degree greater than N+1 and a highly interconnected topology is needed

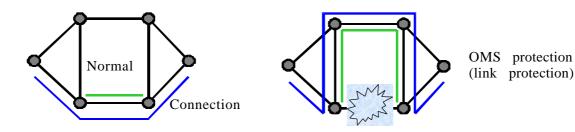
In many cases there is no solution



WDM mesh protection Shared OChS protection (II)

OChS protection-resources sharing

 Protection lightpaths of different channels share some wavelength channels


- Based on the assumption of single point of failure
- Working lightpaths must be link (node) disjoint

Very complex control issues

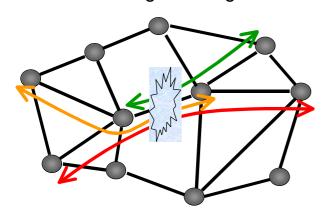
- Also transit OXCs must be reconfigured in case of failure
 - Signaling involves also transit OXCs
 - Lightpath identification and tracing becomes fundamental

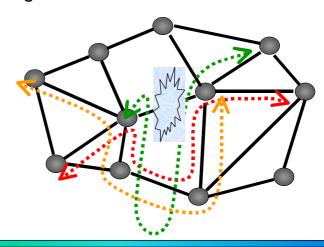
WDM mesh protection <u>Link (OMS)</u> protection

Link protection (≥50% capacity for protection)

- Each link is protected by providing an alternative routing for all the WDM channels in all the fibers
- Protection switching performed by fiber switches (fiber cross-connects)
- Signaling is local; transit OXCs of the protection route can be pre-configured
- Fast reaction to faults
- Some network fibers are reserved for protection

Span protection (50% capacity for protection)


 Similar to link protection, but exploiting protection-reserved wavelengths on the same link (as in the 2-fiber OMS SPRING)



WDM mesh protection Link (OMS) protection (II)

Link-shared protection

- Protection fibers may be used for protection of more than one link (assuming single-point of failure)
- The capacity reserved for protection is greatly reduced
- An efficient way of planning a mesh network supporting shared-link protection is ring covering with SPRING-like rings

Outline

- Introduction to WDM network survivability
- WDM networks: a layered vision
- WDM survivability: taxonomy
- Network planning
- Conclusions

WDM mesh OCh-protection

Network planning solution

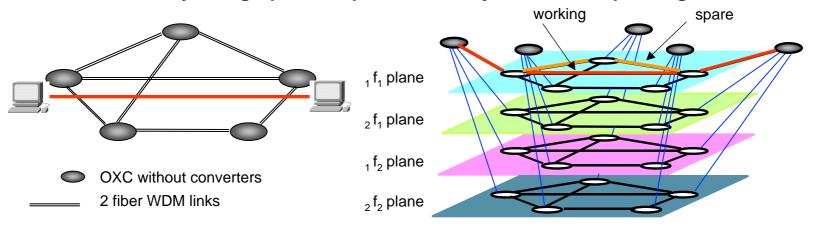
- Pre-planned spare wavelengths allow fast failure recovery
- A design tool has been developed
 - The static lightpath establishment (SLE) is solved in mesh optical multifiber networks providing full shared or dedicated protection
 - The network cost is minimized (i.e. total fiber length, total fiber number) with (VWP) or without (WP) wavelength-conversion capability

Protection paths can be

- Link disjoint
- Node disjoint

Two different approaches

- Protection lightpaths are dedicated (1+1 or 1:1): each working entity has its own spare lightpath
- Protection lightpaths can be partially shared by more working lightpaths
 - Provided that the working paths are link/node disjoint

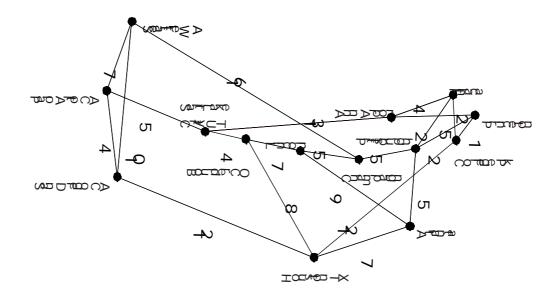


WDM mesh Och-protection

Network planning solution (II)

Heuristic approach

- quasi-optimal solution
- low complexity
- flexible
- scalable as the network size grows
- Based on layered graph and optimal k=2 disjoint shortest path algorithm

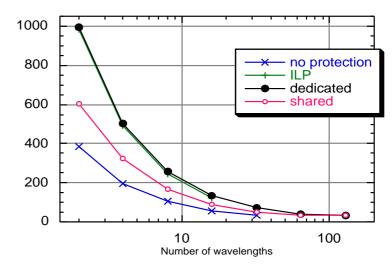


WDM mesh **OCh-protection**

A network case study: NSFNet

A USA backbone network

- 14 nodes
- 44 uni-directional fiber link


WDM mesh OCh-protection *Results*

VWP network

- W=2, 4, 8, 16, 32
- RFWA: SP-F-C-LLR

Results

 Heuristic solution is about only 4% more expensive than ILP (ILP is computationally intensive when applied to large networks)

 Node-disjoint protection is similar to link-disjoint since nodal degree is less or equal 3

Number of fibers

- Dedicated schemes required more than 100% extra-fibers compared to the unprotected case
- Sharing is a good compromise between survivability and network cost

Outline

- Introduction to WDM network survivability
- WDM networks: a layered vision
- WDM survivability: taxonomy
- Network planning
- Conclusions

Conclusions

- We have discussed the different resilience schemes applicable in WDM optical networks
- We have explained the motivation for the implementation of protection in the optical path layer
 - Optical layer protection must detect the failures, activate protection switching, and complete the recovery before higher layers detect the failure
 - Protection routes usually need to be preplanned so that fast fault recovery is possible but require more than 100% excess network capacity
 - The shared methods are more cost-effectiveness
- We have proposed a heuristic approach to planning of protected networks with dedicated or shared schemes